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Abstract--In order to understand the physical processes controlling the formation of various branch features 
stemming from pre-existing defects in rocks, this paper presents a model based on fracture mechanics concepts. 
We examine the consequences of the elastic stress field around an open oblique elliptical defect subjected to 
constant uniaxial or biaxial stress on the kinetics of the classical branch crack. Assuming that propagation does 
not fundamentally change the elastic stress field, the strain energy release rate, G, is computed for each branch 
crack length, L, by integrating the values of the principal stress acting perpendicular to the stress trajectory of the 
other principal stress, starting exactly from the point of maximum tensile stress at the edge of the elliptical defect. 
The propagation regime depends on the slope of the G(L) curve and on its position with respect to the 
equilibrium value Go and the critical value Go, for which catastrophic rupture occurs. 

Without internal pressure, the unimodal curves predict three possible successive propagation regimes: (1) 
stable propagation with increasing velocity; (2) catastrophic propagation with velocity jump and associated 
acoustic emission; and (3) stable propagation with decreasing velocity. The catastrophic regime is limited to high 
load values. Experimentally, the triggering of the propagation can be very difficult to predict, as it depends on 
slight variations in the length of pre-existing microcracks stemming from the elliptical defect at the root of the 
branch crack path. 

With internal pressure, the stress field is modified so that the maximum tensile stress is present at some distance 
from the edge of the elliptical defect. This can result in a change in the shape of G(L) curves which indicates that 
two independent velocity jumps may occur: the first one is mainly, linked to the local influence of the defect, the 
second (leading to a large extension) is due to the general influerlce of the internal pressure. 

INTRODUCTION 

THE most widespread mechanism for fault development 
is the extension of pre-existing defects of whatever 
origin, for these act as stress concentrators. This devel- 
opment can occur through the connection of individual 
faults which can be considered as elementary faults 
(Granier 1985). They can extend, either by shear neo- 
rupture at the tips of pre-existing defects in confined 
conditions (relatively high lateral stress), or by branch 
features developing in Mode I (opening mode) at a high 
angle with respect to the oblique defect, and with low 
lateral stress (Petit & Barquins 1987). Thus it is absol- 
utely essential to have an accurate physical basis to 
understand the behaviour of such fractures. This implies 
a fracture mechanics approach (Lawn & Wilshaw 1975). 
It may include not only the complete definition of the 
associated stress and displacement field which gives 
insight into the kinematics of faulting (Pollard & Segall 
1987) but also the physical definition of initiation and 
propagation conditions. A kinetic approach to branch- 
ing development is essential to understand propagation; 
this is the aim of this paper. 

Geological branch features formed at the tips of pre- 
existing joints subjected to shearing movements can be 

of various types. Figure 1 shows a few classical field 
examples on different scales, such as fault-stylolite- 
tension gash structures (Rispoli 1981) branching perpen- 
dicular to a fault in limestone, and horse tail fractures in 
granite (Granier 1985). The most important physical 
conditions controlling the formation of such features for 
a given rock are the remote stresses, in particular the 
values and ratio of the two main principal stresses, the 
orientation, size and shape of the defect, and the inter- 
nal fluid pressure which can play an important part in 
joint or fault reactivation (Sibson 1990) and extension 
(Pollard 1973, Engelder & Lacazette 1990). 

All these factors can influence the path and kinetics of 
branching. An important aim is to determine whether 
these features are related to a catastrophic (seismic) 
movement or to slower (subcritical) movement. 

The physical approach presented here is based on: (i) 
experiments; and (ii) analytical study of the stress field 
around an elliptical open defect subjected to uniaxial 
loading with or without superimposition of lateral confi- 
nement and/or internal pressure; the corresponding 
stress fields form a basis for fracture mechanics deriva- 
tions. The propagation kinetics are studied in terms of 
strain energy release rate, G, which allows us to predict 
the different types of propagation regimes: stable and 
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Fig. 1. Examples of branching structures. (a) Faults (F), stylolite (St), tension gashes (T) in Languedoc limestone; (b) 
orthogonal branching of a calcite vein in Col du Lautaret limestone (French Alps); (c) horse tail fractures corresponding to 

the damping of a strike slip fault reactivated from a joint in granite (Granier 1985). 

Table 1. Equilibrium and propagation regimes: terminology 

G = Go and OG/OL < 0 

G = Gq~ and OG/OL > 0 

G. > G > G~ and OG/OL > 0 

G~ > G > G~ and OG/OL < 0 

G = G c 

stable equilibrium 

unstable equilibrium 

stable propagation at increasing 
speed; i.e. it is not necessary to in- 
crease the load to accelerate the 
crack propagation; the correspond- 
ing regime is called 'spontaneous' 

stable propagation at decreasing 
speed; i.e. a continuous propagation 
would require an increase in load; 
the corresponding regime is called 
"controllable' 

unstable propagation with acoustic 
emission due to a velocity jump, this 
propagation cannot be influenced at 
all; the corresponding regime is 
called 'catastrophic' 

L is the length of the initial microcrack or of the branch crack. 
Go is the strain energy release rate at the equilibrium (zero crack 

propagation speed). 
Gc is the strain energy release rate corresponding to the appearance 

of a velocity jump. 

'spontaneous' (increasing crack speed), stable and 'con- 
trollable' (decreasing crack speed) or 'catastrophic' 
(velocity jumps), and their chronological appearance. 
The three terms in inverted commas are defined in Table 
1. Here the kinetics of the branch crack under uniaxial 
and biaxial loading conditions are presented, and then 
the role of internal pressure on the initiation and exten- 
sion of the branch crack for both situations is investi- 
gated. This coml~lete and detailed study of the possible 
behaviour of an isolated defect differs from the work of 
Nemat-Nasser & Horii (1982) and Ashby & Hallam 
(1986) which dealt with a single defect submitted to 
increasing loading, in order to study the possible inter- 
action of several defects at various distances apart. 

UNIAXIAL LOADING CONDITIONS 

The path and kinetics of branch crack propagation 
were studied using Plexiglas ® (PMMA, polymethyl- 
methacrylate) plates (50 x 32 × 5 mm), each with a 

0.3 mm wide and 10 mm long slot oriented in various 
directions with respect to the loading axis (angle fl). In 
these experiments, the long edges of the Plexiglas plates 
were inserted without friction in grooved beams, in 
order to avoid buckling, and were submitted to a given 
level of uniaxial loading parallel to the main axis of the 
plate by means of a servo-controllable hydraulic device. 
Thus, deformation and rupture occurred under constant 
load (as in creep testing but under compression). 

Under moderate uniaxial constant loading conditions 
compatible with purely brittle deformation, Mode 1 
(opening mode) propagation of the branch crack 
occurred in the Plexiglas sample (Fig. 2a). Such struc- 
tures have already been observed by other authors in 
various brittle or semi-brittle materials: in glass (Brace 
& Bombolakis 1963, Hoek & Bienawsky 1965, Cottrell 
1972, Sketty et al. 1987), in plaster (Lajtai 1971) and in 
polymers (Nemat-Nasser & Horii 1982, Ashby and Hal- 
lam 1986). However, we also demonstrated that propa- 
gation was followed at higher stress levels by the forma- 
tion of a shear band, more or less as an extension of the 
initial defect, which represents a potential propagation 
path for rupture (Petit & Barquins 1988). 

As soon as constant axial stress was applied, we 
observed that a branch fracture appeared in the slot tip 
vicinity initiated from one of the many microcracks 
induced by the sawing of the slot. Simultaneously, or 
after a few seconds, a second branch fracture developed 
at the other tip, as observed by Cottrell (1972). Both 
cracks then propagated along trajectories which curved 
more or less according to the initial slot angle fl (angle 
between slot and loading axis), but remained perfectly 
centro-symmetric (Fig. 2a). Whatever the initial slot 
angle, branching was always perpendicular to the local 
tangent at the slot edge from a point whose distance to 
the slot tip increases with increasing ft. Figure 3 illus- 
trates the branching for fl = 15 °, 45 ° and 75 °. 

The analytical model is based on the following 
assumptions: the slotted Plexiglas sample is assimilated 
to an infinite plate including an elliptical hole whose long 
axis 2a is equal to the length of the slot and with short 
axis 2b, where b is deduced from the radius of curvature 
R of the slot tips (R = b2/a = 0.15 mm). A classical 
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Fig. 2. (Top.) Plexiglas plate after testing. (a) Uniaxial loading with two symmetrical branch cracks: (b) biaxial loading 
without a branch crack but with a shear band outlined by en 6chclon shallow, microcracks ( fl = 30 °, a = 8 ram, R = 15()um). 

Fig. 3. (Bottom.) Microscopic view, of the root of a branch crack observed for an uniaxial compressive load applied to 
Plexiglas plates for/~ = 15 °, 45 ° and 75 ° (a = 5 mm, r = 150~m). 
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Fig. 4. Calculated contours  of the principal stress 03 around an elliptical slot (b/a = 0.137) inclined at fl = 30 ° to the uniaxial 
loading axis. Unbroken  lines are contours corresponding to tensile stress (with positive values); broken lines to compressive 
stress (with negative values). These values (given in the lateral column or by bold numbers  on some of the contours)  are 
normalized by the absolute value of the applied compressive stress a (a = 8 mm.  R = 150#m).  The  super imposed bold lines 
are the stress trajectories of o, starting from the point where the tensile stress 03 is max imum at the edge of the elliptical slot. 

This trajectory predicts the potential path of the branch crack. 

system of curvilinear co-ordinates defined by two famil- 
ies of confocal ellipses and hyperboles was used so that 
the loci were the same as the ellipse representing the 
slot. Hence the Kolosov-Muskhelishvili (Muskhelishvili 
1975) formalism allows us to express the stresses on a 
smaller experimental volume (Pollard 1973, Wu & 
Chang 1978, Barquins et al. 1989a). Figure 4, for in- 
stance, shows the contours of o3, the minimum principal 
stress (normalized to the applied axial constant stress o), 
with superimposition of the trajectory of the maximum 
principal stress al ,  branching from the edge of the 
elliptical defect at the point of the maximum (tensile) 03 
value. This stress field analysis completely bears out the 
observations that the branch fracture is not initiated at 
the extreme tip of the slot but at a distance from it which 
increases with increasing angle to loadingfl (Fig. 3). This 
confirms the pioneering statement of Inglis (1913) that 
the important  parameter  is not the slot width but the 
radius of curvature at the tips. The model also confirms 
that the branch crack is initiated at the point of the slot 
edge where the tensile stress is maximum and that the 
branch crack propagates along the trajectory of ol at this 
point. 

The propagation kinetics of the branch crack have 

been studied in terms of strain energy release rate, G. 
Here we briefly recall the basis for the construction and 
analysis of the G(L) curves; more details will be found in 
Barquins et al. (in press). 

Two symmetrical branch cracks with the common 
length L can be considered as a single rectilinear crack 
with the length 2L, assuming that propagation does not 
fundamentally change the elastic stress field. We follow 
the methods used by Mouginot & Maugis (1985) to study 
the Hertzian fracture, and calculate the stress intensity 
factor Kl according to Paris & Sih (1965) by integrating 
the principal stress 03 along the branch crack of length L, 
i.e. along the ol stress trajectory: 

Kl = 2 ( L / ~ )  1/2 [03(s)[(L 2 - -  $2) 1/2] ds, (1) 
0 

where s is the curvilinear abscissa of the point where the 
stress 03(s) is considered. As the plane strain condition is 
reached as for any three-dimensional crack (in a thick 
plate), the plane strain formula can be applied to calcu- 
late the strain energy release rate G, such as: 

G =/(2(1 - v2)/E, (2) 

where E and v are, respectively, the Young's modulus 
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Fig. 5. Calculated variations of the strain energy release rate G 
(normalized by the strain energy release rate Go at zero crack propaga- 
tion speed) as a function of the length L of a branch crack (normalized 
by the half-crack length a) along the stress trajectory of tr 1, starting 
from the point of maximum tensile stress o3 at the edge of the slot. The 
different curves are drawn for various uniaxial applied compressive 
stress cr normalized by the stress oo whose maximum value is reached 

for G = Go (/3 = 30 °, a = 8 mm, R = 150ktm). 

and the Poisson ratio of the tested elastic body (for 
Piexiglas, E = 2.8 GPa and v = 0.4). 

From this the variations of G as a function of the pre- 
existing microcrack or branch crack length, L, are calcu- 
lated and drawn in log-log co-ordinates. Figure 5 corre- 
sponds to the experimental  conditions (a = 8 mm, 
R = 150 /am, /3 = 30 °) taking into account the value 
Kl0 = 0.66 MPa.m 1/2 corresponding to the equilibrium 
state of a crack (zero crack propagation speed) in Plexi- 
glas (Williams 1972). Starting from equation (2) 
the values of G are calculated and normalized by Go = 
126 J .m -2 corresponding to Kio. 

The microcrack or branch crack length L is normal- 
ized to the half-length a of the slot. Calculation is 
presented for various imposed uniaxiai loadings o, the 
latter being normalized by the stress o0, corresponding 
to the curve in Fig. 5 with maximum amplitude 
G/Go = 1. All the curves pass through a maximum value 
at the same abcissa, L0 (L0 ---- 500/am in Fig. 5). This 
length, Lc,, delimits areas of unstable [OG/OL),, > 0] 
and stable [(OG/OL)o < 0] equilibrium states, along the 
line G = Go. As shown by Williams (1972), as soon as 
KI > Klo (i.e. G > Go), a crack is initiated and it propa- 
gates with an increasing speed for increasing KI or G; 
and conversely, with a decreasing speed if G decreases 
as the crack grows. Thus, the critical length Lo also 
delimits spontaneous rupture [(OG/OL)o > 0] with a con- 
tinuous increasing crack speed, and controllable rupture 
[OG/aL)o < 0] with a decelerating crack speed (see 
Table 1 for terminology). 

Figure 5 predicts the evolution of a pre-existing micro- 
crack at the slot edge according to the length L o f  this 

microcrack and the intensity of the applied uniaxial load 
o. Let us consider o 0 the critical load (o0 - 18 MPa), with 
its corresponding curve just reaching (tangentially) the 
line G/Go = 1. If o < o0 whatever the microcrack length 
L, propagation cannot occur and the pre-existing crack 
tends to close. For o > Oo, the corresponding curve (e.g. 
Oa in Fig. 5), intersects the equilibrium line for crack 
lengths La and L2, distributed on both sides of the value 
L0. In this case, only a crack of length L such as 
LI < L < L2 can propagate at constant applied stress o. 
If L0 < L < L2, as the curve slope is negative, the crack 
grows with a continuously decreasing propagation speed 
until the equilibrium length L2 is reached. On the other  
hand, if La < L < Lo, the initiation occurs in an unstable 
equilibrium area, so that the crack length increases first 
with an increasing speed up to L = L0 then with a 
decreasing speed until the same equilibrium value L2 is 
reached. The smaller the length of the pre-existing 
crack, which is placed at the slot edge, the higher the 
applied stress necessary to initiate the branch crack, and 
the greater the total length reached at the equilibrium. 

As shown above, if L < L0, as soon as G reaches Go 
by increasing the loading o, a branch crack is initiated 
and grows at increasing propagation speed because G 
increases. But it is well known that G cannot exceed the 
critical value Gc, at which a velocity jump (catastrophic 
propagation) is observed with an associated acoustic 
emission. According to Williams (1972) the critical 
stress intensity factor Kx~, characteristic of Plexiglas, is 
equal to 1.7 MPa.m 1/2, so that the corresponding value 
of Gc is about 1000 J.m -2. Hence,  a new critical loading 
oc (~51 MPa in Fig. 5) can be defined with its corre- 
sponding curve just reaching the line G = Go. This curve 
oc intersects the equilibrium line G = Go at abcissas 
L = Lc and L = L'c (Lc = 10/am and L~ - 4 mm in Fig. 
5), so that it can be predicted that the growth of a pre- 
existing microcrack of length L < Lc must lead to a 
velocity jump if an adequate loading o > oc is applied. 
For instance, let us consider a pre-existing microcrack of 
length L3 (~5/am in Fig. 5); as soon as the compressive 
loading Ob (corresponding to about 70 MPa) is applied, 
the length grows at increasing propagation speed along 
the curve Ob until the value L 4 (---64/am in Fig. 5) is 
reached (G = G~). At that moment ,  a velocity jump of 
the order of Vc = 2.5 cm s- ] (Williams 1972) is observed 
at a nearly constant G, so that the crack length instan- 
taneously acquires a value which cannot be less than L5 
(~1.7  mm in Fig. 5), though it cannot be exactly pre- 
dicted. The crack will continue to propagate or will 
close, according to whether  this length corresponds to 
G > Go or to G < Go, until a new equilibrium is reached 
for L6 (~5.4  ram). For an increase in the applied loading 
the new propagation will occur in stable conditions along 
the equilibrium line G = Go and a very long branch 
crack can be obtained. 

In order  to verify the validity of the predicted different 
crack propagation r6gimes, Piexiglas plates with a 
0.3 mm wide and 10 mm long central slot orientated at 
/3 = 45 ° to the loading axis were submitted to a constant 
uniaxial compressive stress o = 35 MPa which is ade- 
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Fig. 6. Length and corresponding propagation speed vs time for a 
branch crack formed at the tip of a pre-existing oblique open slot in a 
Plexiglas plate submitted to uniaxial loading (fl = 45 °, a = 5 ram, 
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Fig. 8. Strain energy release rate vs branch crack length, in reduced 
co-ordinates. The curves correspond to the theoretical model; dia- 
monds and circles are experimental data deduced from Figs. 6 and 7. 

quate to induce branching from one of the pre-existing 
microcracks made by the sawing at the slot edge. A 
typical evolution of the branch crack length L and the 
associated speed V = dL/dt  is shown in Fig. 6. The crack 
length increased first with an increasing propagat ion 
speed until the value L] = 1.25 mm was reached,  then a 
velocity jump was observed from L1 to L2 = 2.5 mm 
with an associated acoustic emission, characteristic of 
the catastrophic propagation.  This velocity jump was 
followed by a growth of the crack with a decreasing 
speed until an equilibrium value was reached for L not 
smaller than 5 mm.  This is qualitatively in accordance 
with the behaviour  predicted from Fig. 5 when a con- 
stant uniaxial stress such as (7 b is applied to the Plexiglas 
plate. 

As the branch crack experimental  configuration did 
not provide the evolution of G vs the instantaneous 
speed of the branch crack, this was obtained indirectly in 
two stages: (i) experimental  curves for G as a function of 
crack speed in opening Mode I were obtained by a 
classical SDCB (Slotted Double-Cant i lever  Beam)  ex- 
per iment  in Plexiglas; (ii) as the strain energy release 
rate,  G-crack speed relation is the same in both SDCB 
and branch crack experiments,  a value for G can thus be 
given for each branch crack speed (or corresponding 
length). The variation of the strain energy release rate 
GSDCB as a function of the crack propagat ion speed 
v = dL/dt  is shown in Fig. 7. The crack propagat ion 
speeds given in Figs. 5 and 6 allow us to associate every 
branch crack length L to a corresponding strain energy 
release rate G (Barquins et al. 1989b). 

Figure 8 shows the calculated strain energy release 
rate of the branch crack (normalized by Go) as a function 
of the length of the branch crack L (normalized by the 
half-length a of the initial slot) for the compressive 
applied stress a = 35 MPa and two other near  stresses 30 
and 40 MPa. The representat ive curve of the applied 
stress (o = 35 MPa) intersects the equilibrium curve 
G = Go for the length L0 = 44 pm,  which is slightly 
greater  than the size of microcracks at the edge of the 
open slot induced by the sawing method.  But as L0 is 
smaller than Lc, i.e. (OG/OL)o > 0, it is not surprising 
that the branch crack propagates  at increasing speed 
(Fig. 5). The corresponding experimental  points are 
represented by diamonds in Fig. 8; each point is ob- 
tained by associating to a length L the corresponding 
crack speed v = dL/dt,  deduced from Fig. 6, and the 
associated strain energy release rate deduced from Fig. 
7. During the stage of spontaneous subcritical crack 
growth, the data (diamonds in Fig. 8) fall in the immedi- 
ate vicinity of the curve cr = 35 MPa. This curve inter- 
sects the horizontal G = Gc for L~ = 1.25 mm that 
exactly corresponds to the experimental  value L1 (Fig. 
6) and L~ = 3.15 mm which is slightly greater  than the 
experimental  value L2 = 2.5 mm. These two values L{ 
and L;  delimit the propagation corresponding to the 
velocity jump and this agrees well with the experimental  
data. Then G decreases with increasing length L, be- 
cause (OG/OL)o < 0, and the corresponding data, which 
characterize the controllable subcritical crack growth 
stage (circles in Fig. 8), again remain in the immediate  
vicinity of the applied stress curve o = 35 MPa. 

BIAXIAL LOADING CONDITIONS 
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Fig. 7. Strain energy release rate vs corresponding crack propagation 
speed in pure opening Mode 1, in Plexiglas, deduced from experiments 
carried out with Slotted Double-Cantilever Beam (SDCB) specimens. 

In a few experiments  Piexiglas plates were submitted 
to biaxial loading with minor lateral/axial stress ratio k 
of around 1/10. It was shown that the branch crack 
propagat ion was inhibited, whereas a shear band devel- 
oped (associated with en 6chelon shallow cracks in the 
presence of ethyl alcohol) and spread roughly along the 
continuation of the slot. This case is illustrated in Fig. 
2(b) for the same axial compressive stress as in Fig. 2(a) 
with a lateral/axial stress ratio of k = 10%. Figure 9 
showing the stress field around an elliptical defect at 
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Fig. 9. Calculated contours  of  the principal stress a3 around an elliptical slot (b/a = O. 137) inclined at fl = 60 ° to the major 
loading axis, with two very closely related values of  lateral confinement:  (a) 23.6% and (b) 23.7%. The  stress trajectories 
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Presentat ion of the contours  is the same as in Fig. 4. 
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5). showing the influence of internal pressure in uniaxial loading 
conditions. The variation is calculated along the same ol trajectory as 
in Fig. 5. The different curves correspond to various uniaxial applied 
compressive stress a (normalized to (70) with internal pressure equal to 

0.4a(fl=45°,a= 5mm, R = 150~m). 

fl = 60 ° submitted to biaxial loading illustrates a way of 
inhibiting propagation: from k = 0.236 to k = 0.237 the 
ol trajectory featuring the propagation path evolves 
from the classical position (a) to an atypical curling 
position (b) which cannot correspond to any real path. 
The analysis also predicts that the threshold ratio k 
should directly depend on ft. 

INFLUENCE OF AN INTERNAL PRESSURE 

As shown above, the experimental results agree very 
well with the theoretical models. Now we study the 
stress field around a pre-existing slot with internal press- 
ure, in order  to examine its influence on the kinetics of 
branching through G(L) curves. The stress field is ob- 
tained by a classical superimposition of the stress field 
due to the external uniaxiai or biaxial loading on to the 
stress field due to uniform traction at the infinity (far 
field traction) applied to the same elliptical defect. As 
soon as the internal pressure is applied, G(L) curves 
which predict the propagation regimes have a very 
different shape from those corresponding to uniaxial or 
biaxial loading without internal pressure (Fig. 5). Figure 
10 shows this for internal pressures of 40% of the 
external uniaxial normalized compressive stress and for 
various values of the latter. These G(L) curves show 
three successive parts: a first part with positive slope 
leading to a maximum, a second one corresponding to a 
negative segment and third, a new positive segment. The 
question of whether  the latter could be preluding 
another  maximum (thus giving a bimodal curve as for 
internal pressure of 40%) remains unsolved; but if it 

exists, this maximum would obviously be higher than the 
previous one. 

The prediction of the propagation regimes follows 
that already discussed for Fig. 5, but with specific aspects 
linked to the particular shape of the G(L) curves. 

(1) If the given external load does not exceed the 
threshold value O'a, no branching occurs (Fig. 2b). 
Strictly speaking, branching could initiate from a frac- 
ture of length L] but as this dimension is nearly equival- 
ent to half the length of the initial slot, this case is of 
limited interest. 

(2) With a moderate  external load ab, branching may 
initiate from a microcrack of length L2 whose propaga- 
tion occurs in three successive regimes: spontaneous 
(increasing speed) from L2 to L3, controllable (decreas- 
ing speed) from L3 to L4 and then spontaneous again 
from L4 to L5: this precedes a velocity jump (cata- 
strophic propagation) from Ls. This velocity jump pro- 
duces a branch crack whose final length is at least equal 
to 103 times the initial length L2. 

(3) With a high load Od very small microcracks can 
lead to branching. In this case a microcrack of length L6 
propagates spontaneously up to L7, which would remain 
a very small crack with respect to the initial defect if the 
unavoidable velocity jump did not occur. The greater 
the applied stress, the smaller the microcrack producing 
a branch crack and the greater the velocity jump. For oo 
the length L6 of the initial microcrack is multiplied at 
least by | 0  4. 

(4) The situation between 2 and 3 is particularly 
interesting, for it was observed in the course of prelimi- 
nary experiments on Plexiglas plates. With applied 
stress Oc, a microcrack of length Ls situated at the most 
favourable point of the slot edge (maximum (73 tensile 
stress concentrations) gives a branch crack with a stable 
and spontaneous propagation from Ls to Lg. After a first 
velocity jump which increases spontaneously from L 9 to  
Ll0, a new stable propagation phase appears, first con- 
trollable from L]0 to L]~ and then spontaneous from Lit  
to Lt2 before a new velocity jump occurs as soon as 
length Lt2 is reached. 

This helps us to understand how small defects or 
cracks can propagate out of proportion to their initial 
size. Such propagation could be due to a unique velocity 
jump; or it may correspond to the succession of the first 
velocity jump of very limited extension and another 
starting from a much longer branch as the two jumps are 
separated by a phase of slower lengthening. 

SUPERIMPOSITION OF BIAXIAL LOADING AND 
INTERNAL PRESSURE 

It is of geological importance to be able to predict 
branching behaviour from a pre-existing slot submitted 
to biaxial loading with internal fluid pressure. We limit 
the discussion to the case illustrated in Fig. 11, where 
internal pressure is increased from 0 to 100% of the 
value of the major (axial) applied compressive stress 
under biaxial loading conditions, with k = minor 
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Fig. 11. Calculated variations of the strain energy release rate G 
(normalized by the strain energy release rate G.  at zero crack propaga- 
tion speed) as a function of the length L of the branch crack (normal- 
ized by the half-crack length a) along the stress trajectory of o~ 
touching the point of maximum tensile stress o3 at the edge of the slot, 
for a minor stress equal to half the major stress, and various values of 

internal pressure (fl = 45 °. a = 5 ram, R = 150Mm). 

(lateral) /major (axial) applied compressive stress 
ratio = 0.5. 

This shows that no propagation can be expected for an 
internal pressure of less than 12% of the main applied 
compressive stress. For 20%, the unimodal curve indi- 
cates subcritical crack growth with slight increase in the 
branch crack. This behaviour with a small velocity jump 
is still present for 30%. For 40% a true bimodal curve 
occurs, but with a single velocity jump leading to a 
branch length about half the length of the defect. A 
velocity jump leading to large extension of pre-existing 
microfractures can only be observed when the internal 
pressure is well over 50%; i.e. when the internal press- 
ure slightly exceeds the lateral stress. For 60% internal 
pressure, there will be continuous propagation with two 
velocity jumps as already shown in Fig. 10 for oc. 
Obviously 50% (i.e. internal pressure = lateral stress) is 
a critical point for which the propagation should stop 
after the first velocity jump, but a slight increase in 
internal pressure or a very slight decrease in k could 
trigger off a second velocity jump with very great in- 
crease in length. It is evident that for a velocity jump 
which produces a large extension, the initial microcrack 
is very small (about 1/1000 of the final length) and thus 
could correspond to relatively very small flaws in geo- 
logical materials. 

ing more detailed discussion in a separate paper. Poten- 
tial applications concern isolated branching features 
stemming from macroscopic oblique defects such as 
joints, dikes, veins and solution surfaces. Though 
scarce, the natural features closely resembling the model 
are very important, such as the fault-stylolite-tension 
gash system described by Rispoli (1981) (Fig. la). Obvi- 
ously as friction is not taken into account in the model, 
the corresponding stress field cannot be applied as it is. 
In particular, the predicted orthogonality of branching is 
only observed in the case of the reactivation of fractures 
where internal pressure prevents any contact between 
the walls (Fig. lb). Another hindrance to direct appli- 
cation is that geological observations do not at present 
allow us to check whether the movement is perpendicu- 
lar to the defect front, or whether the section in question 
is perpendicular to the defect and parallel to the move- 
ment. Statistically, most of the described branching 
features must correspond to mixed-mode situations 
(II + III) cross-cut by observation planes of unknown 
orientation with respect to the movement. This could be 
one reason for the wide variety of features observed. 

A more direct application deals with the interpre- 
tation of fractographic features observed on Mode I 
rupture joint walls which indicate speed variations. It is 
well established that these joints are initiated from 
defects (Pollard & Aydin 1988) and that internal press- 
ure is often superimposed on the least tectonic stress to 
determine propagation (Secor 1965). The model could 
be developed to take into account variation in k and 
internal pressure during incipient propagation; other 
fluctuations in speed during this stage might be found by 
examining experimental and natural fractographic fea- 
tures. Finally the model is important for seismic 
phenomena: the velocity jump on branch features could 
give some tensile seismic sources (non-double couple 
sources), as inferred by Sileny et al. (1986). Some after- 
shock distributions seem to appear in situations compar- 
able to branching. The important point is that the model 
gives some idea of how catastrophic phenomena in 
rupture can be triggered off from very minute cracks on 
the defect, whose position and length are impossible to 
observe in experimental and afort iori  in natural con- 
ditions, or from very slight variations in the applied 
stress and/or internal pressure. In particular, this is 
because the model takes into account the difference 
between the strain energy release rate value at equilib- 
rium, and the critical Gc value corresponding to cata- 
strophic propagation; this is not often included in papers 
dealing with natural fracture propagation mechanisms. 
This difference emphasizes the importance of subcritical 
propagations over long periods, which should not be 
neglected in geological contexts. 

IMPLICATIONS AND CONCLUSION 

The aim of this paper is to provide some basis for a 
physical approach to branch fractures, and especially 
their kinetics. Geological applications are varied, need- 
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